

Part 1: Introduction & Motivation

Peter Vogt peter.vogt@ec.europa.eu

Time schedule for a 1-day workshop:

▶ 09:00 – 12:30: Introduction, motivation, and examples for new ways of image object analysis.

GuidosToolbox: Features, processing options; GWS 1-3.pptx

> 12:30 - 13:30: Lunch break

> 13:30 – 17:00: Hands-on training, discussion, suggestions, ... GWS 4.pptx

Who is this guy anyway?

Personal: German

Education: Free University Berlin, Germany

> 1992: MSc Meteorology: atmospheric Rad. Transfer

> 1997: PhD GeoSciences: RT-vegetation, BRDF, LAI, f_{APAR}

Developer and team member of PCLinuxOS

Professional background:

- > 1992-93: Inst. Space Sciences Berlin: Radiative Transfer in Ocean & Atmosphere
- → 1993-97: Inst. Planetary Research, DLR: RT in Vegetation, BIRD, BRDF, LAI, f_{APAR}
- > 1998: Raytheon ITSS, USA: VIIRS/NPOESS: albedo algorithm development
- > 1999-present: Joint Research Centre, European Commission, Italy:
 - * BRDF: biophysical parameters [AnisView], atmospheric correction
 - * Atmosphere: vertically resolved actinic flux, surface UV-radiation, skin cancer
 - * Water: eutrophication risk in coastal waters, detection & monitoring of illicit oil spill discharges [Oil_GUI, Oil_dbase],
 - * Land: satellite image processing: small water bodies, desert locust, cloud masking, change detection, image overlays; forest: fires, spatial pattern, connectivity, fragmentation, restoration,... [GuidosToolbox (GTB, GWB)]

JRC sites

Headquarters in **Brussels** and research facilities located in **5 Member States**:

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)

The workshop will address the following topics:

- GWS 1: Introduction/motivation for new ways of image analysis
- GWS 2: Pattern Analysis (M)SPA
- GWS 3: GuidosToolbox: program features and processing options
- GWS 4: Hands-on examples using training data:
 - a) Data preparation, MSPA, Google Earth overlays, batch process
 - b) Distance, fragmentation, network, restoration, change, ...

Guidos Toolbox: Generic Geometric Image Object Analysis

Graphical User Interface for the Description of image Objects and their Shapes

Aim: Toolbox for a generic description of spatial pattern

- GuidosToolbox (GTB)¹: interactive desktop application (macOS, Linux, MS-Windows)
- GuidosToolbox Workbench (GWB)²: command-line Linux server application
- Documentation¹: detailed product sheets and extensive workshop material...

Image Analysis

Generic Geometric Image Object Analysis

1. Input - Critical

- What exactly is the scope?
- What does the customer expect?
- Which feature do I need?
- Are customer and I on the same track?
- Which dataset is appropriate?
- Availability, cost, quality, scale?
- Legal: Public or proprietary data?
- Ready to use or pre-processing needed? •

2. Software

- Which SW is most appropriate?
- Do I have access to it?
- Which analysis tool is needed?
- Applicability and limitations?
- Can I do this myself?
- Do I need additional SW or help?
- Will the customer understand it?

3. Output

- Interpretation is *subjective*
- Post-processing needed?
- What is the key message?
- Best reporting style?
- Are the expectations met?
- Analysis tool adequate?
- Analysis settings adequate?
- Adequate for customer?
- Input data appropriate?

Data selection & preparation: **EXPERT**

2. Processing: Analysis of image components: SW-developer

3. Interpretation: **EXPERT**

Aim: Toolbox for a generic description of spatial pattern

And why Generic Geometric Image Object Analysis?

A blank image has no information. Image objects form pattern!

Note: We constantly do pattern analysis (while watching, reading, driving, ...)

3 principles of GTB analysis

1. Spatial information:

Only maps show spatial variability, permit to locate hotspots and temporal changes. Maps are mandatory for spatial planning, ...

2. Quantitative measures:

Clear and intuitive indicators – ideally in %, imperative for efficient communication.

3. Generic, flexible analysis:

Applicable to any thematic layer & any scale, can be fine-tuned to meet custom reporting styles. *Pattern as a reference product* serves as a base for a variety of end-users.

A temporal overview ...

2003 – present

- 1) Structural Pattern Analysis ...
- 2) From Structural to Functional Pattern ...
- 3) Combining Pattern With Connectivity ...
- 4) Change Analysis ...
- 5) Landscape Mosaic ...
- 6) Contortion Analysis ...
- 7) Distance Analysis ...
- 8) Fragmentation Analysis ...
- 9) Accounting ...
- 10) Restoration Analysis ...
- 11) GWB

1) Structural Pattern Analysis: what are we actually talking about?

How can we describe digital image features in an objective way?

Show 5 people the same image and ask them what they see.

You will get 5 different answers, all different to what you expected. So, who is right? - Everybody, if you adopt their mindset... **Interpretation** is, by definition, **subjective** because it is driven by individual interest, priorities, requirements, or personal preference...

A philosophical question: truth ↔ subjectivity (Søren Kierkegaard)

Task: Report on Forest Spatial Pattern in EU member states.

1. FSP = f(average patch size, total forest area)

Slovakia: constant, no change?

2 parameters: APS, Area.

Pro: intuitive

Con: inconclusive & no map

→ no reliable statistics

Background: Landscape Metrics

Riitters et al. 2000:

2. FSP = f(Pf, Pff)

4 classes:

Core, Patch, Perforated, Edge.

Pro:

intuitive, independent, flexible, spatial information, perforated

Con: confusion at pixel level

→ no reliable statistics

Moving window over each forested pixel

Slovakia: change!

Spatial information but confusion at pixel level...

Pf/Pff: 4 thematic classes

Background: MSPA (version 1)

Morphological implementation

Analyzing a binary mask with morphological filters to derive the spatial pattern classes:

CORE PATCH EDGE

Vogt et al. 2007a: replace moving window with math. morphology

3. FSP = f(morphology)

4 classes: Core, Patch, Perforated, Edge.

Pro:

intuitive, independent, *flexible*, spatial information, perforated, → reliable statistics

Con: nothing

Morphology: no confusion at pixel level.

Vogt et al. 2007b: morphology including structural connectivity

FSP = f(morphology)

Pro:

structural connectors!

Con: ?

Core
Patch
Perforated
Edge
Branch of Edge
Shortcut
Branch of Shortcut
Corridor
Branch of Corridor

Soille&Vogt 2009: MSPA (with up to 25 classes...), FSP = f(MSPA)

2018 Background segmentation:

- Background: 0 byte outside Foreground
- Border-Opening: 220 byte surrounded by FG-pixels (mainly Edge)
- Core-Opening: 100 byte surrounded by blue Perforation pixels (inside Core)

European

MSPA processing principle: 3 steps

1. input

Raster map: land cover, species distribution, dispersal, ...

2. foreground/background

Binary mask: forest, habitat, grassland, movement, ...

3. MSPA segmentation

Morphological feature classes (more details in part 2 of this workshop)

SPA = Simplified Pattern Analysis (less!)

MSPA subset: flexible but fewer classes → clearer message

1) Structural pattern analysis...

Rivers & wetlands, Finland

Maze, medical, manufacturing...

Disease spread pattern

National/global forest pattern

Automatic zooplankton recognition, (Schmid et al. 2016)

Mysid (opossum) shrimp

Nauplius larvae stage of copepod (~0.2mm)

Adult copepod, extremely important in the food chain since it has vast lipid reserves

US GI Assessment, (Wickham et al. 2010)

Habitat conservation....

US-EPA: Enviroatlas (Landscape Pattern)

2) Functional pattern analysis...

MSPA: maps morphological features/connectivity on any kind of digital data map

1) Structural pattern: map of forest, grass-, wetland, habitat, ...

Structural map

2) Functional pattern: map of movement, dispersal, telemetry, ...

Mapping functional connectivity, (Vogt et al. 2009)

3) Combining Pattern and Connectivity...

MSPA reliably finds connectors but how *important* is each connector?

MSPA

Graph theory (Conefor)

Key connectors & habitats (Saura et al. 2011)

Probability of Connectivity (PC), (Saura & Rubio 2010) = Intranode connectivity + flux to/from node +

connectivity for other nodes:

 $dPC_k = dPCintra_k + dPCflux_k + dPCconnector_k$

$$dPC_k = 100 \cdot \frac{PC - PC_{remove,k}}{PC}$$

dPCintra > 0

dPCflux > 0

dPCconnector > 0

Intra: Habitat resource within a patch

Flux: How well connected is the patch

Connector: Patch importance for the

others to remain connected

4) Change analysis...

How can we detect and measure essential changes in an objective way?

Change map

Changed: Gain oss

Unchanged: Forest Non-forest

Morph. erosion

Change seeds

Reconstruction

Filling & final change product

MCD (Seebach et al. 2013)

- **Essential loss areas**
- Essential gain areas
- Remove unwanted spurious changes

5) Landscape Mosaic...

How big is the impact of dominant land cover types: Agriculture/Natural/Developed?

3 LC types

Change over scale or over time

Compare different countries

Define an adequate reporting scheme:

6) Contortion analysis...

From a spatial perspective: evidence of anthropogenic activities...

Humans create regular-shaped objects (buildings, agricultural fields, ...)

Contortion: count directional changes in x/y along raster representation of object perimeter: *Object complexity* (≠ Corner count!)

Contortion

x Corner count

Contortion features:

- Rotation invariant
- Low count:

Anthropogenic objects

High count:

Natural objects

7) Distance analysis...

Euclidean distance, influence zones, buffer zones, proximity...

Mask

Locations where pairwise distance < (restoration planning)

Watershed line:
delineating equal
distance to direct
neighbors
(influence zone)

Proximity

8) Fragmentation analysis...

Aim: generic geometric approach: normalized [0,100]% spatial index

For each forest pixel: Get Forest Area Density (FAD) at 5 neighborhood scales

Select a focal pixel as the center of a neighborhood

Fragmentation (FAD):

- Spatial feature
- Scale-dependent
- Maps FG and BG
- Structural measure

Measure the proportion of forest in the neighborhood: P = 6/9 = 67%

Repeat for a larger neighborhood:

P = 22/25 = 88%

And so on... using 5 neighborhood sizes

5 maps – one for each neighborhood size

Store the results at the location of the focal pixel and repeat for all pixels.

8) Fragmentation analysis...

1) Measure FAD at 5 different scales, show in six fragmentation classes

and add across-scale fragmentation summary

FAD < 10% 1 - Rare 10% ≤ FAD < 40% 2 - Patchy 40% ≤ FAD < 60% 3 - Transitional 60% ≤ FAD < 90% 4 - Dominant 5 - Interior 90% ≤ FAD < 100% FAD = 100% 6 - Intact

Fragmentation class

2) Statistics for area and fragmentation classes

FAD: Foreground Area Density summary analysis for image:

C:\GuidosToolbox\data\NFinland A.tif

Fragmentation class: foreground proportion at observation scale/area:								
Observation scal	le: 1	2	3	4	5	mscale		
Neighborhood are	ea: 7x7	13x13	27 x 27	81x81	243x243	(estestestestestestestes		
Rare:	0.0033	0.0242	0.2450	0.3786	0.3976	0.0186		
Patchy:	1.9327	3.5649	4.9045	7.1666	9.1789	2.8774		
Transitional:	7.5076	8.9589	11.3673	13.3002	15.8747	10.3957		
Dominant:	24.1627	36.2559	45.5856	60.1687	71.3635	58.0553		
Interior:	14.1438	21.5234	28.4999	18.8959	3.1853	28.6529		
Intact:	52.2498	29.6727	9.3977	0.0900	0.0000	0.0000		

Fragmentation class: Transitional Dominant Interior Intact 8-conn FG [pixels]: Area: 1099835.0 # Patches: 600 Observation scale | MultiScale | Legend

Color

FAD range

3) Per-pixel or Average Per-Patch fragmentation classes

4) Multi-scale or user-defined single scale analysis

Where is the forest and what is the patch size class distribution?

1. Define up to 6 patch size classes:

3. Summary statistics:

10) Restoration analysis...

Spatial integrity of a network (Coherence). Evaluation of restoration scenarios.

1) Network status summary.

Locate optimum path between start and target habitat

2) Setup & evaluate restoration scenarios.

Interactively draw and evaluate the efficiency of any custom restoration scenario

2021

2019- GuidosToolbox Workshop

11) GuidosToolbox Workbench (GWB)

GWB: The most popular GTB tools as command-line modules for Linux servers.

WB P223: Foreground Density [%], Contagion [%], or Adjacency [%]

cp -fr /opt/GWB/*put ~/

Spatcon: P2, P22, P23, Shannon, Sumd Requirements: 1b-BG, 2b-FG, 3b-specific BG (for Adjacency), optional: 0b-missing Parameter file: input/p223-parameters.txt GWB PARC: Landscape Parcellation index Requirements: [1b, 255b]-land cover classes, optional: Ob-missing Parameter file: input/parc-parameters.txt GWB REC: Recode class values Requirements: categorical map with up to 256 classes [0b, 255b] Parameter file: input/rec-parameters.txt GWB RSS: Restoration Status summary Requirements: 1b-BG, 2b-FG, optional: 0b-missing Parameter file: input/rss-parameters.txt GWB SPA: Spatial Pattern Analysis (2, 3, 5, or 6 classes) Requirements: 1b-BG, 2b-FG, optional: 0b-missing Parameter file: input/spa-parameters.txt More details in the module-specific parameter files, or run: GWB XXX --help ... E ()

Cmd-line or browser-based application on FAO SEPAL cloud computing platform.

0 b + 0

European Commission

- Automated mass-processing
- Standalone, single directory setup
- System-wide installation or user account only
- Fully compatible with GTB

Thank you

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

