

Part 2: Pattern (M)SPA

Peter Vogt peter.vogt@ec.europa.eu

Joint Research Centre The workshop will address the following topics:

- GWS 1: Introduction/motivation for new ways of image analysis
- GWS 2: Pattern Analysis (M)SPA
- GWS 3: GuidosToolbox: program features and processing options
- GWS 4: Hands-on examples using training data:
 - a) Data preparation, MSPA, Google Earth overlays, batch process
 - b) Distance, fragmentation, network, restoration, change, ...

MSPA: Background

Georges Matheron (1930-2000): Geostatistics (kriging), Mathematical Morphology

Based on Set Theory: analyze-detect shape/structure/connectivity

Medical Applications

Detect & analyze catchments; oil spills; vessels; mines; facialfingerprint- character- recognition (security, fax); robotics; biology astronomy ...

Now ecosystems!

Pierre Soille (JRC)

Basic morphological filters

Implementation principle (simple 4-class scheme)

- 1. CORE: erosion of forest mask
- 2. ISLET: morphological reconstruction of forest mask: opening; dilations, difference to original forest mask
- 3. EDGE: forest mask erosion = *buffer zone*, intersect with flood-fill from outside the image (wet background)
- 4. PERFORATED: dry background

1. CORE: Step 0: starting with forest mask: forest – black; nonforest – white

European Commission

- 1. CORE: Step 1: erosion (forest mask)
- removed forest pixels (buffer zone)

1. CORE: Result: forest mask – erosion (forest mask) showing CORE forest pixels

2. ISLET: Step 0: starting with forest mask: forest – black; nonforest - white

Segmentation steps

2. ISLET: Step 1: erosion (forest mask). Note:

- removed forest pixels, including all ISLET pixels

European Commission

11

Segmentation steps

European

Commission

2. ISLET: Step 2: dilation (Step 1) ⇔ morph_open (forest mask)

Segmentation steps

2. ISLET: Step 3: dilation (Step 2) * forest mask

morph_reconstruction (forest mask)

Segmentation steps

2. ISLET: Step 4: dilation (Step 3) * forest mask

morph_reconstruction (forest mask)

Segmentation steps

2. ISLET: Step 5: dilation (Step 4) * forest mask

morph_reconstruction (forest mask)

Segmentation steps

2. ISLET: Step 6: dilation (Step 5) * forest mask ⇔ idempotence ⇔ mask: forest – forest patch

European Commission

2. ISLET: Step 7: difference: forest mask – Step 6

2. ISLET: Result: forest mask showing CORE + ISLET forest pixels

3. EDGE: flood-fill like the background from outside image boundaries: EDGE: wet background PERFORATED: dry background

Result: CORE + ISLET + EDGE + PERFORATED forest pixels

Commission

Homotopic shrinking:

Skeleton of an object maintaining the information of its shape (topology)

Fig. 4. Anchored order-independent skeletonisation for $\mathcal{G} = 8$: a - skeleton without anchors (homotopic marking), b - 8-connected distance function, c - regional maxima of the distance function, d - anchored skeleton.

Iwanowski & Soille, 2005: Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, Volume 3691/2005, 538-545, DOI: 10.1007/11556121_66

Segmentation steps

European Commission

MSPA: FG/BG-Segmentation

- Geometric (generic!) for any binary mask & any scale
- > Automated description of pattern and connectivity
- > The spatial detail of input and output are *identical*
- > Each pixel is in one of the mutually exclusive classes
- Synthesis of object oriented and pixel based approach

25

SPAx: simplified MSPA

SPAx: fixed 8-connected FG & fixed EdgeWidth=1 pixel But *much* faster compared to MSPA ...

MSPA-processing parameters

MSPA parameter 1: FG connectivity (8/4)

8-connectivity ↔ 4-connectivity MSPA segmentation: 8100 ↔ 4100

Parameter 1: Foreground Connectivity (<Foreground Connectivity>, 1, 0, 0).

White circles show the difference when using 8- (left image) or 4-connectivity (right image) for the MSPA-parameter 1: *Foreground Connectivity*.

MSPA parameter 2: *EdgeWidth* (1-100)

Parameter 2: EdgeWidth (8, <EdgeWidth>, 0, 0).

EdgeWidth increase reduces core-area and may change the non-core pattern classes (white circles). *EdgeWidth changes do <u>not</u> affect* foreground coverage.

MSPA parameter 3: *Transition* (1/0 – on/off)

transition off

Parameter 3: Transition (8, 1, <Transition>, 0). Left: Transition on (8110). Right: Transition off (8100).

Transition: set to show connecting transition pixels to Core area (white circles) or hide these pixels to maintain closed perimeters for the classes Perforation and Edge.

Transition: Visual switch, data remains unchanged!

Intext=0

Intext=1

Intext can be used to add a second layer of the 7 basic classes inside perforations. When *Intext* is on (1), a pixel offset of 100 is added to the feature classes inside of the internal areas of foreground objects.

MSPA locates & quantifies 3 types of Background:

(ex.: 88.24% of iFG is forest \rightarrow 11.76% of iFG are forest openings)

GTB: Help \rightarrow GTB Documentation \rightarrow MSPA Guide

- Single channel, (Pseudo-) binary raster data having maximum 3 values:
 - 0 byte Missing (optional)1 byte Background (mandatory)2 byte Foreground (mandatory)

 Format: 8bit Tiff (GeoTiff), generic image formats additional files (.hdr, .tfw, etc) are not needed; Compression: none or LZW

GTB: Help \rightarrow GTB Documentation \rightarrow MSPA Guide

MSPA: Maximum. size/dimension: MS-Windows: 100 MB (10k²)

MSPA: Mac/Linux: 4, 8, 16, 128 GB RAM: 12k², 18k², 28k², 75k²

SPA: GuidosToolbox: 30k². If larger, use <u>GWB</u>

(*MSPA-Tiling:* automatic procedure of buffered tiling, MSPA- processing, appropriate reassembling of final result, same as MSPA cmdline version.)

Tile 1	Tile 2	Tile 3
Tile 4	Tile 5	Tile 6
Tile 7	Tile 8	Tile 9

MSPA-tiling is a less than ideal and time-consuming solution, which is not guaranteed to provide exact results. Please only use <u>GWB</u> for MSPA processing of large images!

GTB: Help \rightarrow GTB Documentation \rightarrow MSPA Guide

Binary raster data (GeoTiff, Tiff, LZW-compressed) A) Visual result: maximum of 11 colors:

- 7 pattern classes of Foreground,
- White Missing (optional),
- Gray Background (mandatory, up to 3 colors).

Note:

MSPA class names are generic. Their meaning depends on the nature of the input data and should be amended by the user: i.e., *Perforation,* the outer perimeter of a Foreground *hole* in a forest mask could be a *Clearing* while for a water mask such an area is an *Island*.

(M)SPA output data

Class	Color	RGB	Intext = 0	Intext = 1
1) Core		000/200/000	17	17 / 117
2) Islet		160/060/000	9	9 / 109
3) Perforation		000/000/255	5	105
4) Edge		000/000/000	3	3 / 103
5a) Loop		255/255/000	65	65 / 165
5b) Loop in Edge		255/255/000	67	67 / 167
5c) Loop in Perforation		255/255/000	69	169
6a) Bridge		255/000/000	33	33 / 133
6b) Bridge in Edge		255/000/000	35	35 / 135
6c) Bridge in Perforation		255/000/000	37	137
7) Branch		255/140/000	1	1 / 101
Background		220/220/220	0	0
Border-Opening		194/194/194	N/A	220
Core-Opening		136/136/136	N/A	100
No Data		255/255/255	129	129

B) Numeric result:

- 13 classes, *Intext*=0
- 23 classes, Intext=1

Detailed information: GTB: Help \rightarrow GTB Documentation \rightarrow MSPA Guide

Standalone MSPA plugins on the MSPA website for: QGIS, R, ArcGIS and GWB

Thank you

© European Union 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

