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a b s t r a c t

We deployed the Lightframe On-sight Keyspecies Investigation
(LOKI) system, a novel underwater imaging system providing
cutting-edge imaging quality, in the Canadian Arctic during fall
2013. A Random Forests machine learning model was built to
automatically identify zooplankton in LOKI images. The model
successfully distinguished between 114 different categories of
zooplankton and particles. The high resolution taxonomical tree in-
cludedmany species, stages, aswell as sub-groups based on animal
orientation or condition in images. Results from a machine learn-
ing regression model of prosome length (R2

= 0.97) were used
as a key predictor in the automatic identification model. Model in-
ternal validation of the automatic identification model on test data
demonstrated that the model performed with overall high accu-
racy (86%) and specificity (86%). This was confirmed by confusion
matrices for external testing results, based on automatic identifica-
tions for 2 complete stations. For station 101, from which images
had also been used for training, accuracy and specificity were 85%.
For station 126, from which images had not been used to train the
model, accuracy and specificity were 81%. Further comparisons be-
tween model results and microscope identifications of zooplank-
ton in samples from the two test stations were in good agreement
for most taxa. LOKI’s image quality makes it possible to build accu-
rate automatic identificationmodels of very high taxonomic detail,
which will play a critical role in future studies of zooplankton dy-
namics and zooplankton coupling with other trophic levels.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Zooplankton are a diverse group of animals with limited swimming ability inhabiting aquatic
ecosystems worldwide. They transfer energy and carbon from autotrophic organisms to organisms
higher up the trophic chain, such as forage fish and seabirds (e.g. Bradstreet and Cross, 1982 andWelch
et al., 1992). The Arctic is meanwhile affected by rapid climate change (Overland et al., 2014; Serreze
and Francis, 2006), including important changes in the phenology of primary producers (Ardyna
et al., 2014; Arrigo et al., 2008). Here, changes in the distributions, abundances and behaviour of
zooplankton are being observed (Lischka and Riebesell, 2012; Richardson, 2008; Wassmann et al.,
2011) potentially leading tomajor ecosystem shifts (Grebmeier et al., 2006; Falk-Petersen et al., 2007;
Søreide et al., 2010). Effective monitoring of zooplankton population dynamics and their interactions
with primary producers is therefore critical.

Although zooplankton sampling still relies heavily on nets due to their inexpensiveness and ease of
deployment, new in-situ imaging systems for zooplanktonhave beendeveloped since the 1980s (Davis
et al., 1992b; Jaffe et al., 2001; Ortner et al., 1979;Wiebe and Benfield, 2003). Themain advantage of in-
situ imaging systems over nets is the unprecedented high spatial resolution of the data obtained (Davis
et al., 1992a), permitting the fine scale study of zooplankton distribution along hydrographic gradients
such as fronts and clines (e.g., Haury et al., 1978 and Valiela, 1995). Each imaging system has different
qualities and characteristics based on the chosen optical setup and implementation (see Schulz et al.,
2010 and Schulz, 2013). For instance, the volume of water imaged varies between samplers, and is
important in determining the representativeness of images for abundance estimation (Davis et al.,
1992b; Benfield et al., 1996; Cowen and Guigand, 2008). Amongst the few available in-situ imaging
systems, the recently developed LightframeOn-sight Keyspecies Investigation (LOKI) system is unique
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in that it includes a net and cod end to concentrate and capture zooplankton in a constrained volumeof
water, so that imaged specimens can be analysed further in the laboratory (Schulz et al., 2010; Hirche
et al., 2014). Since underwater imaging systems often return thousands of images from a single haul,
it has been desirable to develop and apply methods of automatically identifying taxa in images (Rolke
and Lenz, 1984). Zooplankton identification from images has become a public endeavour in recent
years (Zooniverse, www.planktonportal.org), and development of automatic identification models
has been subject to prominent programming competitions (National Science Bowl, www.kaggle.com).
In contrast to manual identification, automatic identification models can analyse every zooplankton
individually instead of relying on extreme subsampling (Guelpen et al., 1982). Also, the model can
quickly be applied to new data to increase analytical capacity (Benfield et al., 2007) and the error
for each category in the model is known, constant, and may be corrected for (Solow et al., 2001).
Therefore, automatic approaches address poor consistency and accuracy of manual identifications
(Culverhouse et al., 2003, 2014). Modern automatic identification models are based on machine
learning (ML) algorithms, whose underlying concept is that a machine can ‘‘learn’’, in many small
steps, without being explicitly programmed for each decision taken (Kovahi and Provost, 1998).
ML algorithms are effective for detecting patterns in data and making predictions based on them
(Strobl et al., 2009). Algorithms currently in use for automatic zooplankton identification include
support vector machines (Cortes and Vapnik, 1995), Convolutional Neural Networks (Fukushima,
1980), and the decision tree based ensemble model Random Forests (RF, Breiman, 2001). However,
models successfully implemented in this field have lacked taxonomic detail (usually with only 10–20
categories), and quality of zooplankton images taken by optical imagers has only recently reached a
level where body structures of zooplankton can be seen (often key to identifying them). This study
used high resolution in-situ images of zooplankton in the Canadian Arctic taken by LOKI to develop a
highly specific automatic zooplankton identificationmodel. The ability of the newly developedmodel
to identify taxa to a very high taxonomic level was tested by feeding the model new images.

2. Materials and methods

2.1. The LOKI system

The Lightframe On-sight Keyspecies Investigation (LOKI) system consists of 4 main units: (1) A
plankton concentration net, with mouth opening of 0.28 m2 and a mesh size of 200 µm, (2) the LOKI
computer with various environmental sensors, (3) the camera system, and (4) the battery (Fig. 1(a)).
The system configuration is designed for vertical towing in the water column. Zooplankton and
particles enter the concentration net from the top, before flowing through a channel that passes in
front of the camera (Fig. 1(b), (c)), a Prosilica GC 1380H camera (AVT—Allied Vision Technologies,
Canada) with a Pentax 2514-M lens and an image resolution of 1360×1024 pixel at 30 fps. Dark field
imaging and an image resolution of 23 µm per pixel were used here. A high power LED flash unit,
synchronized with the exposure trigger signal of the camera, allows for a fast shutter time (55 µs),
avoiding motion blurring and image distortion (see Schulz, 2013 for more details). In combination
with an only 4 mm high imaging channel (length = 31.3 mm,width = 20.75 mm, volume =

2.6 cm3) this leads to all imaged particles being in focus. Single organisms are detected and cut out
from the field of view of the camera and stored on the solid state drive (SSD) of LOKI, where they are
later accessed for further analyses.

2.2. LOKI deployment

Sampling was conducted during the ArcticNet 2013 expedition (July 27 to September 8) onboard
the CCGS Amundsen. Vertical tows of LOKI were conducted in the Northwest Passage (74°N 95°W),
northern Baffin Bay and the North Water Polynya (NOW, 77°N 75°W) and northward to the vicinity
of the Peterman Glacier (81°N 62°W). Imaged zooplankters were collected in a custom-made cod
end, and upon retrieval were preserved in 4% formaldehyde–seawater solution bufferedwith sodium-
borate. Sensors attached to LOKI recorded temperature and oxygen (Aanderaa Oxygen Optode 4330F),

http://www.planktonportal.org
http://www.kaggle.com
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Fig. 1. (a) Schematic of LOKI showing its main components 1–4. (b) The LOKI system on the right attached to a frame besides
a traditional zooplankton net sampler, during a recent deployment in the Canadian Arctic. (c) The LOKI camera, showing how
plankton passes through the channel for imaging. (a) and (c) are adapted from Isitec GmbH. Photo credit for (b): Jessy Barrette.

conductivity (Aanderaa Conductivity Sensor 3919), fluorescence (TriOS MicroFlu-chl) and pressure
(Aanderaa Pressure Sensor 4017D) per second during each haul.

2.3. Preparing LOKI data for building prosome length, prosome width and automatic identification models

A total of 15 hauls from 9 stations across the Canadian Arctic were used to source images for this
study (Fig. 2, Table 1). Prosome length, width, and automatic identification models were trained on
images from 14 hauls, ensuring that all zooplankton taxa likely to be encountered in the study area
were included in the three models. Images from a single haul were used exclusively in the testing of
the automatic identification model (Fig. 2, Table 1).

For each haul, all LOKI images were imported into a specific software designed to analyse LOKI
images and build a zooplankton classification tree (LOKI browser; Schulz et al., 2010). The LOKI
browser measuring function, with a threshold of 15 on a scale from 0 (black) to 255 (white), was
used to measure image parameters (hereafter referred to as image feature set 1, Table 2), such as
object area (mm2), circularity (Wojnar and Kurzydlowski, 2000), Humoments (Hu, 1962) and Fourier
descriptors (Zhang and Lu, 2002) from the 8 bit greyscale images. The ZOOMIE v 1.0 (Zooplankton
Multiple Image Exclusion) software (Schmid et al., 2015)was applied to all images.Written in PhP and
JavaScript, ZOOMIE ensures that LOKI data can be considered representative of the plankton present
by detecting multiple images of a single individual (hereafter referred to as ‘‘double images’’), which
should be removed from the analyses. Double images are taken when flow speed inside the camera
channel is reduced, primarily due to changes in the pressure at the entrance of the imaging channel
due to e.g. aggregations of biomass or additional heaving of the sampling platform. Each image was
assigned the x- and y pixel position which it had when cut out of the overall camera frame during
deployment. An image was flagged as a double image when its x and y positions changed from the
previous image only by a limited number of pixels (e.g. 80 pixels) during a short time period, and
when a set of ten rules was unanimously fulfilled. Each rule was based on a different image parameter
(e.g. area inmm2, greymean and kurtosis, see Schmid et al., 2015 for details). Image artefacts that could
prevent correct zooplankton identification such as smears on the camera lens or light reflections on
image borders, were detected and deleted in Adobe Photoshop CS6. ‘‘Clean’’ images were re-imported
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Fig. 2. Stations in the Canadian Arctic used to train (blue points) and test (black points) the models developed here. Images
from station 101 (yellow points) were used in both training and testing. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Stations included in training and testing the models developed in this study.

Station Date Latitude
°N

Longitude
°W

Bottom
depth
(m)

Usage Total number
of images
collected

Number of images
used in training

101 2013-08-15 76°23.23 77°22.98′ 349 Training,
testing

9418 1412

’’ 2013-08-15 76°22.67′ 77°22.93′ 357 Training 18772 1161
’’ 2013-08-15 76°20.71′ 77°34.47′ 356 Training 10781 304
’’ 2013-08-16 76°19.78′ 77°42.2′ 246 Training 10644 291
’’ 2013-08-16 76°17.48′ 77°45.62′ 282 Training 13499 303
115 2013-08-18 76°20.477′ 71°11.756′ 654 Training 15632 423
’’ 2013-08-18 76°21.6′ 71°12.54′ 631 Training 24347 534
132 2013-08-20 78°59.94′ 72°3.7′ 216 Training 1956 252
251 2013-08-22 81°12.40′ 62°07.28′ 835 Training 6421 281
253a 2013-08-25 79°17.73′ 71°17.67′ 190 Training 4113 249
’’ 2013-08-25 79°17.513′ 71°17.911′ 181 Training 2063 250
122 2013-08-27 77°20.691′ 75°0.976′ 641 Training 21521 507
126 2013-08-27 77°20.65′ 73°25.64′ 324 Testing 4083 na
117 2013-08-28 77°19.45′ 77°0.47′ 449 Training 2625 300
Peel sound 2013-09-02 74°11.23′ 95°56.29′ 192 Training 4904 568
’’ 2013-09-02 74°10.327′ 95°48.307′ 189 Training 5181 418

and image feature set 1 was re-measured in LOKI browser to account for changing parameters after
artefact removal.

Categories of zooplankton in the classification tree were chosen as taxonomically detailed as
possible and included species and copepod stages (Fig. 3), but also orientational subgroups, as the
same individual could appear very differently in images depending on its position (see Fig. 4).
Zooplankton from each taxonomic/orientational category weremanually identified from images with
LOKI browser. Images were selected from depths across the whole water column to avoid selection
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bias. Of 14558 manually identified images from the 14 hauls, 7252 were randomly selected using
the sample function in R to train the model (the remaining 7306 reserved for model internal testing).
Manual image identifications were performed in the Fortier laboratory at U. Laval by authors CA and
MS. Due to morphological similarities and size overlaps, the young stages of the abundant copepods
C. glacialis C2/C. hyperboreus C1, as well as C. glacialis C3/C. hyperboreus C2, were treated as single
categories in the training database.

Lengths and widths (µm) of 5165 zooplankton specimens across all categories of the classification
tree were measured with a digital ruler in LOKI browser. For copepods, prosome length and prosome
width were measured. For organisms with no prosome (e.g. jellyfish) maximum length and width
were taken.

For all manually classified images selected for training, image feature set 1 was re-analysed using
LOKI-browser with different grey level thresholds (levels: 8, 15, 20, 35, 60), to account for variations
in the appearances of a zooplankter in images. Thresholds ranged from 8, where a greater part of the
image areawas included in the analysis, to 60, which resulted in amore restricted thumbprint (Fig. 5).
This process generated a total augmented training dataset of 36260 images, ranging from n = 30 for
C. hyperboreusmales of lateral view, to n = 1810 for copepod nauplii.

Images were again thresholded, this time in Adobe Photoshop CS6, with grey levels: 8, 15, 20, 35,
60 and the resulting images were converted to binary images. Two further analyses were carried out
on these binary images; Morphological Spatial Pattern Analysis (MSPA) and mesh size analysis, both
part of GUIDOS toolbox (Graphical User Interface for theDescription of imageObjects and their Shapes
(GUIDOS; Vogt, 2014)). GUIDOS toolbox was programmed in the IDL programming language and is a
self-contained suite of raster image processing routines. MSPA describes geometry and connecting
pathways in images and is solely based on geometric concepts. During the MSPA analysis process,
the foreground area of an image is divided into 7 MSPA classes (Core, Islet, Perforation, Edge, Loop,
Bridge and Branch; see Table 2, Fig. 6 as well as Soille and Vogt, 2009 for more details). Mesh size
analysis is a fragmentation measure introduced by Jaeger (2000), which is well suited for comparing
fragmentation of images with different total size. MSPA andmeshsize analyses led to an additional 23
and 3 image features respectively, hereafter referred to as image feature set 2 (Table 2).

Image feature set 2 was merged with data from LOKI browser, consisting of the environmental
information (measured when each image was captured), the manual classification and image
feature set 1. The resulting table provided the basis for building the prosome length and width
models.

2.4. Training models with Random Forests

Salford Systems, Inc. predictive modeler (version 7.0) implementation of the Random Forests
(RF) algorithm was used to build all three models produced in this study. RF belongs to the family
of ensemble decision tree methods and employs bootstrap aggregating (bagging; Breiman, 2001),
i.e. selecting a random subset of data for each decision tree built in the ensemble of trees (the forest;
Breiman, 1996). RF differs fromother algorithms in that it also selects a randomsubset of predictors for
splitting at each node in the decision tree. Trees in a RF are grown to their full size, without employing
pruning. These features make RF relatively resistant against overfitting (Breiman, 2001).

RF was used to build regressionmodels of prosome length and prosomewidth using image feature
sets 1 and 2 as predictor variables (Table 2). Both regressionmodels were internally tested by RF using
20%withheld test data and built on 500 trees. The best performing settings differed only in the number
of predictors considered at each node (Table 3). Linear regressions for predicted prosome length
and width versus their measured counterpart were carried out to investigate their accuracy. The
prosome length and width models were then applied to the complete dataset of manually identified
zooplankton images and a predicted prosome length and width obtained for all of them. These two
measures were then included as predictors in the automatic zooplankton identification model.

Backward stepwise model selection was used for each model to sequentially remove lowest
ranking predictors. If the model improved, the predictor was dropped and the model was rerun on
the remaining predictors.
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Fig. 3. LOKI images of selected zooplankton taxa.
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Fig. 4. Orientational subgroups were also included in the automatic identification model. (a)–(f) show females of Calanus
glacialis in different positions (a) lateral position, (b) dorsal short position, (c)–(d) dorsal long position, (e)–(f) antenna in front
position. To recognize that these images show the same species and stage required the model to be trained on orientational
categories.

Table 3
Important Random Forests model settings for the regression models of prosome length and width as well as the zooplankton
classification model.

Model Type Validation Trees grown Predictors at
each node

Class weights

Prosome length Regression 20% withheld test data 500 20 –
Prosome width Regression 20% withheld test data 500 15 –
Zooplankton Classification Dataset of 7306 images 500 30 Balanced
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Fig. 5. The copepodHeterorhabdus sp. measured at different thresholds. The green outline delineates the area included by LOKI
browser for image feature extraction. An identificationmodel based on these five thresholds is more robust thanwhen just one
threshold is used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Raw LOKI images on the left compared to their correspondingMSPA images on the right. TheMSPA classes core (green),
edge (black), bridge (red), branch (orange) and loop (yellow) each characterize different structures (e.g., maxillipeds, antennae)
of the zooplankton individuals. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The automatic identification model used balanced class weights causing Random Forests to
account for uneven sample sizes by upweighing rare categories (i.e., incurring a higher error for
misclassifying rare cases, Table 3). The classification model was also built on 500 trees but the best
results were obtained using a subset of 30 predictors at each node.

2.4.1. Model internal testing
The manually identified images not used in training were used for model internal testing the

automatic identificationmodel (Table 3). The test dataset had the sameunderlying species distribution
and images were processed in the same way as training images with the sole exception that they
were only analysed based on grey level threshold 15 rather than the five used for the training images.
Test sample size varied considerably between zooplankton categories (Tables A.1 and A.2), but always
represented ∼20% of the augmented training sample size (ranging from n = 6 for rare C. hyperboreus
males to up to n = 429 for Triconia sp.). RF calculated the specificity (%, true positive samples/classifier
prediction total) for each category in the classification tree. Accuracy (%, true positive samples/total
manual classification) and specificity without orientational misclassifications were calculated (e.g.,
C. glacialis C3 in lateral orientation vs. C. glacialis C3 in dorsal orientation). In a second step categories
differing only in orientation but showing the same taxa were pooled.
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2.5. External validations based on test stations

At stations 101, western NOW, and 126, eastern NOW (Fig. 2, Table 1), the developed automatic
identification model was used to identify all images to further validate the model.

Automatic identifications of single images were compared with manual identifications. This was
done randomly within each category of the classification tree until 50% of all images were validated
and for a minimum of n = 15. Accuracy and specificity for each category were calculated.

Apart from a reliably working automatic identification another potential source that can bias
abundance estimates is the in-situ imaging process itself. To test whether the LOKI system imaged the
zooplankton community representatively rather than testing the model itself, the cod-end samples
taken were also analysed under a binocular microscope by an expert taxonomist. Three zooplankton
subsamples were taken from the cod-end of each station and 1000 copepods from each subsample
were identified. Numbers of all zooplankton were recorded. Results were compared with automatic
identifications.

3. Results

A total of 114 zooplankton/particle categorieswere included in the automatic identificationmodel.
That number was reduced to 63, for display, after assigning categories describing animal conditions
or orientations to taxa. These 63 compressed categories were separated into 5 groups: (a) copepods
identifiable to the stage level (typically Calanus copepods), (b) copepods not identifiable to the stage
level, (c) gelatinous zooplankton, (d) non-gelatinous-non-copepod zooplankton and (e) other particles
such as zooplankton faecal pellets (Table A.2).

3.1. Model internal testing

Based on the 114 original categories, the classifier showed average accuracy (true positive
samples/total manual classification) and specificity (true positive samples/classifier prediction total)
values of 85% (Table A.1), whilst these measures for the 63 compressed categories were 86% and 86%
respectively.

During model internal testing, accuracy ranged from 62% for C. glacialis C2/C. hyperboreus C1 to
100% for several taxa including C. hyperboreus males (Table A.2). Specificity ranged from 40% for
Paraeuchaeta sp. C3 to 100% for Heterorhabdus sp. The confusion matrix for model internal testing
similarly revealed the high performance of the model and a low probability of misclassifications
(Fig. 7). Mean probability of misclassification across all categories was 2.9%. The top 6most important
predictors in the automatic identification model were Hu moment 1, 4 and 2, followed by predicted
prosome length, form and predicted prosome width (Table A.3).

The regression models for prosome length and prosome width performed very well (R2 values of
0.97 and 0.96 for prosome length and width respectively, Fig. 8). For both models the area of the
imaged organism was the most important predictor (Table A.3). Backward stepwise model selection,
which was used for all models, did not lead to increased performance and therefore all models were
built using all predictors.

3.2. External validations based on test stations

Automatic identifications showed that the most abundant taxa at the two stations was C.
hyperboreus C4 (2697 identified images at station 101 and 1109 images at station 126) followed by C.
glacialis C5 (1247 images at station 101 and 428 at station 126) and M. longa females (624 images at
station 101 and 384 images at station 126, Table A.4).

Manual verifications of images confirmed the high model specificity and accuracy shown by
internal testing. Inspections of 4820 images from station 101 and comparison with predictions
revealed weighted mean accuracy and specificity of 85%. For station 126 (2163 images) weighted
accuracy and specificity were at 81% each (Table 4).
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Table 4
Accuracy (Ac) and specificity (Sp) for each of the 63 compressed categories at the two test stations.

Taxon or particle Stage Station 101 Station 126
Sample size
(n)

Ac
(%)

Sp
(%)

Sample size
(n)

Ac
(%)

Sp
(%)

(a) Copepods identified to the stage level

C. glacialis

C1 49 78 75 11 73 73
C4 159 82 78 94 77 74
C5 624 85 85 211 78 76
F 40 81 72 23 76 71

C. hyperboreus

C3 110 82 72 40 80 72
C4 1349 87 92 555 85 89
C5 296 88 83 97 81 71
F 61 87 77 68 83 84
M 5 80 67 1 100 50

C. glacialis C2/C. hyperboreus C1 – 15 73 80 7 71 71
C. glacialis C3/C. hyperboreus C2 – 145 83 81 64 79 79

M. longa

C1 128 78 79 26 71 74
C2 50 83 73 15 73 76
C3 67 84 93 16 81 71
C4 164 85 89 77 80 83
C5 42 82 76 15 75 75
F 312 87 89 192 82 86
M 22 91 71 63 84 80

Paraeuchaeta sp.

C2 1 100 25 0 – 0
C3 7 86 60 0 – 0
C4 15 88 70 12 83 71
C5 14 79 65 11 73 67
F 2 100 50 2 100 33
F with
egg

0 – 0 13 77 77

Pseudocalanus sp.

C1 3 100 30 0 – 0
C4 1 100 33 4 75 60
C5 71 85 87 72 80 84
F 15 83 70 5 80 67

(b) Copepods not identified to the stage level

Aetideidae – 8 88 54 15 87 76
Copepoda egg – 171 99 99 16 94 94
Copepoda nauplii – 116 84 88 58 80 81
Harpacticoida – 7 86 75 5 80 67
Heterorhabdus sp. – 5 80 67 2 100 100
Microcalanus sp. – 15 78 70 1 100 20
Oithona sp. – 20 79 78 26 76 80
Scaphocalanus sp. – 1 100 50 8 75 75
Triconia sp. – 291 81 88 146 77 85

(c) Gelatinous zooplankton

Aglantha digitale – 28 89 82 31 85 82
C. limacina adult – 9 78 78 0 – –
C. limacina larvae – 29 74 77 15 74 77
Chaetognatha – 15 78 75 6 83 63
Ctenophora – 15 87 76 11 82 69
Limacina helicina – 40 82 84 15 81 76
Oikopleura sp. – 15 72 68 5 60 50
Other hydromedusae – 5 100 83 2 100 67
Siphonophora – 5 80 50 6 67 80
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Table 4 (continued)

Taxon or particle Stage Station 101 Station 126
Sample size
(n)

Ac
(%)

Sp
(%)

Sample size
(n)

Ac
(%)

Sp
(%)

Veliger larvae – 15 80 70 16 74 72

(d) Non-gelatinous-non-copepod zooplankton

Aphroditiformia larvae – 11 73 67 10 70 70
Cirripedia cypris – 31 94 91 2 50 33
Cirripedia nauplii – 10 80 67 1 100 33
Echinodermata larvae (bell-shaped) – 15 81 71 4 75 60
Echinodermata larvae
(triangular-shaped)

– 15 86 77 2 50 33

Gammaridae – 1 100 33 2 50 50
Mysidae – 3 100 75 4 100 80
Ostracoda – 20 85 75 13 77 71
Other amphipoda – 15 85 71 2 100 67
Polychaeta adult – 16 97 78 8 88 78
Polychaeta larvae – 27 85 73 9 78 64
Radiolaria – 27 85 84 15 80 80
Themisto sp. – 15 95 70 4 75 75

(e) Other particles

Detritus – 15 79 72 2 100 40
Faecal pellet – 15 79 76 0 – 0
Fibre – 15 75 63 15 74 74

Fig. 8. Prosome lengths and prosome widths predicted by the model, and plotted against their measured values. Red and
green lines are linear regressions of prosome length and width respectively. The black line indicates perfect agreement. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For specific taxa, accuracy at station 101 ranged from 62% for Oikopleura sp. and 100% for
several taxa including mysidae, whereas specificity ranged from 0% for Paraeuchaeta sp. females
with eggs (only one false positive identification was found) and 99% for copepod eggs. At station
126, accuracy at station 126 ranged from 50% for three groups including gammaridae and 100% for
several taxa including C. hyperboreusmales, whereas specificity ranged from0% for four taxa including
Paraeuchaeta sp. C2 and 100% for Heterorhabdus sp. Note that sample sizes were very low (i.e. below
n = 5) for taxa with low accuracy or specificity (Table 4).
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The confusion matrices for stations 101 and 126, based on the manual verifications of automatic
identifications, showed pattern similar to model internal testing (Figs. 9, 10). Mean probability of
misclassifications for stations 101 and 126 was 3.1% and 5.2% respectively. Certain stages of C.
hyperboreus were wrongly identified as C. glacialis stages and vice versa, but at low probabilities.
Several misclassifications occurred at higher probabilities at station 126 (e.g. between ostracods and
cirripedia cypris stage or between Oikopleura sp. and A. digitale, Fig. 10).

Counts from automatic identifications at stations 101 and 126 were very similar to counts from
the biological sample for most stages of the large copepods C. hyperboreus, C. glacialis and M. longa
(e.g. 1109 counts from automatic identifications vs. 1035 ± 123 counts from the biological sample
for C. hyperboreus C4 at station 1126, Fig. 11). At both stations substantially more individuals of
Pseudocalanus sp.,Oithona sp., Triconia sp. andMicrocalanus sp.were identified in the biological sample
than by the model. LOKI also encountered difficulties in imaging relatively translucent gelatinous
zooplankton. Image data showed that taxa such as Clione limacina or chaetognaths, usually abundant
in biological samples, were scarce in images.

3.3. Vertical distribution data

In Fig. 12, numbers of C. glacialis C5 and C. glacialis C3/C. hyperboreus C2 counted by themodel were
used to produce a vertical distribution plot for these taxa.

4. Discussion

This study developed a model to automatically recognize zooplankton specimens in images
captured by the Lightframe On-sight Keyspecies Investigation (LOKI) system in the Canadian Arctic.
Image quality has only recently increased enough to make such detailed taxonomic classification
possible (Schulz et al., 2010; Sainmont et al., 2014). Highly detailed in-situ LOKI images allowed us
to develop an identificationmodel with 114 original categories, uniquely includingmany species, and
stages and orientations of copepod species. Through three separate validation approaches: (1) model
internal testing, (2) comparisons of model results with those of manual identifications of images, and
(3) comparisons of model counts with zooplankton numbers actually in the biological samples taken
by LOKI, we showed that our model was highly efficient in zooplankton identification, especially for
certain taxa. Results of internal model testing (high identification accuracies and specificities of the
n = 114 classifier as well as of the compressed results with 63 categories) certainly substantiate
that claim. Although some categories underperformed, overall model performance is in the range
of what an expert labeller can achieve consistently using microscopes (Culverhouse et al., 2003).
Consistency is a considerable problemwhendifferent taxonomistsmanually count zooplankton under
the microscope (Culverhouse et al., 2014). Accuracy and specificity for many taxa, including stages of
large copepods (C. hyperboreus, C. glacialis and M. longa), were good and allow data derived from the
automatic identification model to answer ecological questions for these taxa. However, accuracy and
specificity was lower for small, translucent, similar looking young stages of mesozooplankton (e.g.,M.
longa C1 & C2, Oithona sp.,Microcalanus sp., Pseudocalanus sp. C1). For categories with lower accuracy
and specificity the approach described in Solow et al. (2001) can be applied to correct abundance
estimates based on the determined misclassification probabilities. The approach makes abundances
derived from these categories more reliable.

Validation of the model based on manual identifications of zooplankton in the images for the
two completely identified test stations generally showed high agreement with results of model in-
ternal testing (at station 101, accuracy and specificity differed by just 1% from internal testing). At
station 126, tests showed a 5% difference in accuracy and specificity (this test was completely inde-
pendent since no images from this station were used for training, therefore these results are partic-
ularly promising). The confusion matrix for station 126 showed that some taxa (e.g. Cirripedia cypris
stage or Gammaridae) had higher misclassification probabilities (maximum = 50%), however these
were typically categories where images and automatic identifications were very rare (sometimes as
few as n = 1) and therefore misclassification measures were not reliable in those cases. Although the
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Fig. 11. Numbers of zooplankton specimens in particular groups identified by the model, compared to those present in the
biological samples from stations 101 and 126. Numbers 1–5 show copepodite stages: M = males, F = females, All = sum of all
stages in the biological sample. The black line indicates perfect agreement.

confusion matrices for stations 101 and 126 were based on 50% randomly labelled ground-truthing
datasetswe believe the sample sizewas generally high enough (lower limit of n = 15 if possible, lead-
ing to 100% labelled images per category in some cases) and that no substantial bias was introduced
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Fig. 12. C. glacialis C5 and C. glacialis C3/C. hyperboreus C2 binned at 1m intervals. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

to accuracy and specificity measures. In comparison to the subsampling employed in the analysis of
biological samples where external factors (e.g. gravity) can lead to a bias (e.g. oversampling certain
size classes), random subsampling from a list of images must be much less likely to introduce bias.

In our third test, results of the model were compared with actual zooplankton counts in the
biological samples. This is a useful test of the model, however note that it assumes that the LOKI
camera successfully imaged all animals that passed through during deployment. Furthermore, since
only fractions of the biological samples were analysed (total abundances were estimates), whereas
the model identified every imaged plankton, counts in the two approaches could be expected to
differ. However, for relatively large animals with high sample size (e.g., C. hyperboreus and C. glacialis),
abundances were in fact very similar between the model identifications and the biological sample.
Furthermore, for these taxa, results of automatic identifications were similar to the biological sample
counts at both test stations, showing consistencywith the comparison of automatic identifications and
manual identifications of the underlying images. Both external tests therefore point to a good ability of
themodel to generalize on newdata. Very small copepods such asOithona sp. were highly abundant in
the biological samples, and are of high importance in the ecosystem (e.g., Gallienne and Robins, 2001
and Turner, 2004). It seems that the LOKI system had problems in imaging such species. Very small,
translucent copepods were probably missed because of the algorithm which detects zooplankton
when flowing through the camera channel during deployment. If that algorithm is too sensitive LOKI
tries to record every particle, whereas if the algorithm is not sensitive enough it misses very small
and translucent organisms. Trying to capture pictures of all particles leads to a crash of the camera
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framerate and an overflow of the image buffer of the system, therefore rendering data collected
neither quantitative nor representative. Therefore that algorithm needs further advancements in
order to efficiently sample animals such as Oithona sp. or Triconia sp.

The prosome length and width models which were developed in this study provided meaningful
predictors for the automatic identification model. In copepod taxonomy prosome length rather than
total length is often used to identify species and stages (prosome length values can be more specific
to a given stage). For copepods, prosome measurements are therefore likely to be better predictors
than total length values derived from Equivalent Spherical Diameter (ESD), which are generally used
in other zooplankton automatic identification studies (e.g. Bell and Hopcroft, 2008 and Gorsky et al.,
2010). Grossmann and Lindsay (2014) developed regressionmodels between ESD and prosome length
which can be used to approximate prosome length after identification, obtaining R2 values from 0.74
to 0.91 for different taxa. The machine learning regressions developed here had higher R2 values of
0.97 for length and 0.96 for width, over all taxa. Prosome length can also be converted to biomass of
each imaged zooplankton using taxa specific conversion factors (e.g. Blachowiak-Samolyk et al., 2008
for the Arctic).

Older studies using automatic zooplankton recognition models generally worked with a much
coarser taxonomic resolution than presented here (typically up to 20 categories), and were often
based on analyses of preserved specimens (e.g., Hu and Davis, 2006, Bell and Hopcroft, 2008 and
Gorsky et al., 2010). More recently, Dieleman et al. (2015) built an automatic identification model
for 121 zooplankton categories with ∼82% accuracy using Convolutional Neural Networks, with
categories also including shape and orientation subgroups, but again categories had a much coarser
taxonomic resolution (e.g., calanoid copepods were not separated into species; see Cowen et al.,
2015 for the underlying dataset). Sosik and Olson (2007) developed a successful implementation
for automatic identification of 22 phytoplankton categories, solely relying on Matlab for feature
extraction and training a Support Vector Machine. Laney and Sosik (2014) then switched to RF for
training 47 phytoplankton categories. The RF implementation used in this study is likely superior to
other implementations of RF (e.g. in R orMatlab). Reasonsmay include superior weighting algorithms
in Salford’s implementation aswell as a superior splittingmethod since Salford’s RF is constantly being
developed further (Herrick, 2013).

The importance of the different predictors in the classification model showed that the most
important predictors belonged to image feature set 1, but also included predicted prosome length
and width as well as GUIDOS toolbox’s MSPA category branch. Branches characterize the ends of
appendages such as antennae, maxillipeds and swimming legs. Adding image feature set 2 to the
analysis, which is based on the standalone software GUIDOS toolbox, provided an additional 26
predictors. It added mostly information on the connectivity of pixels in the images (MSPA analysis),
and resulted in an increase in overall accuracy and specificity of∼10%. GUIDOS toolboxwas originally
developed for landscape ecology andwas then repurposed for themethod described here. Knowledge
transfer, such as then one described here, often lags substantially though (e.g., Cutler et al., 2007).
MSPA analysis is only available in GUIDOS toolbox (P. Vogt, personal communication, February 1,
2016) and therefore a pure Matlab approach would miss these important connectivity features in
zooplankton images.

The model developed here could be adapted for use in other oceanic regions and with different
species by retraining the model. Taxonomic categories and their images can easily be added or taken
out from the classification tree developed here. After measuring the parameters of the newly added
images, the RF model could rapidly be retrained. In general measuring image parameters is fast.
Feature set 1 using LOKI browser is measured fully automatic following the import of station data into
the software. Measuring feature set 2 is also fully automatic after setting a few parameters. Several
hundred images per minute can be analysed using MSPA analysis and several thousand images per
minute using meshsize analysis. ‘‘Cleaning’’ images of artefacts is unfortunately a step that currently
has to be done manually to ensure reliability.

4.1. Conclusion

A detailed automatic identification model with 114 original categories was developed for
zooplankton taxa imaged with the LOKI and proved via multiple tests to work well, identifying
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many species and stages. With this automatic identification model, new images can be identified
in a fraction of the time it would take to analyse them traditionally using a binocular microscope,
and possibly with higher consistency and accuracy. Comparison of biological samples with automatic
identifications revealed that whilst quality of images taken by LOKI is very high, the system did not
image all taxa representatively. This is important for the zooplankton optical imaging community
since little information exists to date on the comparison of images vs. biological sample. For reliable
abundance estimates, it was necessary to remove double images from our dataset. Other researchers
using underwater imaging systems should consider whether it is necessary to treat double images
in their own approaches (this is not always done). We used the model to produce a high-resolution
vertical distribution graph for important zooplankton taxa at 1 m intervals, showing that the model
can have powerful applications in studies of zooplankton ecology. The automatic identificationmodel
is currently being used to study the coupling between primary and secondary producers in the Arctic.

Improvement of the LOKI imaging system is possible in several ways. The algorithmwhich cuts out
single organismpictures from the overall image frame during LOKI deployment should be improved in
order tomake the representative imaging of small, but important taxa such asOithona sp. and Triconia
sp. possible. Colour cameras (Sainmont et al., 2014) are surely going to play a larger role in plankton
imaging in the future and are planned for the LOKI system as well.
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Appendix

See Tables A.1–A.4.

Table A.1
Accuracy (Ac), specificity (Sp) and test sample size for all 114 categories in the automatic zooplankton identification model.

Taxon or particle Stage Orientation/
condition

Sample
size (n)

Ac (%) Sp (%)

Aetideidae sp. – – 64 92 86
Aphroditiformia larvae – – 34 83 97

A. digitale – Full size 116 90 98
Partial 67 88 90

Chaetognatha – Body 49 93 86
Head 122 90 75

Cirripedia cypris – – 97 85 94
Cirripedia nauplii – – 26 94 65
Copepoda egg – – 287 100 95
Copepoda nauplii – – 362 83 89

Ctenophora – Large 39 100 97
Small 40 97 78



M.S. Schmid et al. / Methods in Oceanography 15–16 (2016) 129–160 151

Table A.1 (continued)

Taxon or particle Stage Orientation/
condition

Sample
size (n)

Ac (%) Sp (%)

C. glacialis

C1 Dorsal 31 40 71
Lateral 16 21 63

C4 Dorsal 28 70 82
Lateral 17 38 59

C5
Dorsal 39 94 79
Dorsal, antenna
extended

8 23 63

Lateral 88 67 82

F

Antenna in front 16 100 88
Dorsal long 23 47 65
Dorsal short 37 100 68
Lateral 51 75 78

C. glacialis/C. hyperboreus

C. glacialis C2/C.
hyperboreus C1

Dorsal 10 47 70
Lateral 9 100 67

C. glacialis C3/C.
hyperboreus C2

Dorsal 31 82 87
Lateral 16 77 63

C. hyperboreus

C3
Dorsal, antenna
extended

12 100 92

Dorsal 26 68 81
Lateral 14 52 93

C4
Dorsal 49 95 82
Dorsal, antenna
extended

11 86 55

Lateral 218 73 84

C5
Dorsal 32 100 91
Dorsal, antenna
extended

53 89 96

Lateral 154 89 92

F
Dorsal 48 100 98
Dorsal, antenna
extended

38 97 100

Lateral 138 86 95

M lateral 6 100 83

C. limacina adult – – 22 100 100

C. limacina larvae – Long 55 96 82
Round 71 87 82

Detritus – – 143 83 71
Echinodermata larvae (bell-shaped) – – 50 88 60
Echinodermata larvae
(triangular-shaped)

– – 146 97 88

Faecal pellet – – 82 88 91

Fibre –
Cloudlike shape 323 83 89
Compact shape 310 91 92
Elongated 84 91 87

Gammaridae – – 39 97 92

Harpacticoida – Dorsal 51 100 92
Lateral 17 100 100

Heterorhabdus sp. – – 40 91 100
(continued on next page)
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Table A.1 (continued)

Taxon or particle Stage Orientation/
condition

Sample
size (n)

Ac (%) Sp (%)

L. helicina – – 126 87 92

Microcalanus sp. – Dorsal 35 63 69
Lateral 33 100 42

Mysidae – Extended 97 98 98
Round 40 95 100

M. longa

C1 Dorsal 24 94 71
Lateral 31 55 84

C2 Dorsal 15 48 73
Lateral 17 75 88

C3 dorsal 15 48 73
Lateral 13 54 54

C4 Dorsal 29 79 90
Lateral 26 69 69

C5
Dorsal 31 89 81
Dorsal, antenna
extended

17 65 88

Lateral 33 59 79

F
Dorsal 44 97 86
Dorsal, antenna
extended

22 78 64

Lateral 218 84 89

M
Dorsal 12 100 83
Dorsal, antenna
extended

20 100 65

Lateral 57 80 70

Oikopleura sp. – Complete 36 96 75
Partial 66 79 83

Oithona sp. – – 52 89 62
Ostracoda – – 295 82 84

Other amphipoda –
Dorsal 16 86 75
Lateral 38 95 95
Round 67 98 94

Other hydromedusae – – 17 100 88

Paraeuchaeta sp.

C2 Lateral 17 100 47
C3 Lateral 20 100 40

C4 Dorsal 27 100 78
Lateral 14 100 71

C5
Dorsal 21 100 76
Dorsal, antenna
extended

17 100 76

Lateral 38 97 84

F
Dorsal 13 86 92
Lateral 29 100 69
With eggs 39 95 97

Polychaeta adult – Long 84 100 85
Round 38 76 76

Polychaeta larvae – Bulky shape 61 98 84
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Table A.1 (continued)

Taxon or particle Stage Orientation/
condition

Sample
size (n)

Ac (%) Sp (%)

Thin shape 94 85 78

Pseudocalanus sp.

C1 Lateral 20 100 10
C4 Lateral 10 100 70

C5 Dorsal 61 88 72
Lateral 159 83 86

F Dorsal 24 85 71
Lateral 50 76 74

Radiolaria – – 234 85 91
Scaphocalanus sp. – – 39 90 90
Siphonophora – – 75 98 69

Themisto sp. –
Dorsal 38 97 87
Lateral 75 91 68
Round 42 95 98

Triconia sp. –
Dorsal 34 96 74
Lateral 296 88 91
M and F attached 99 88 92

Veliger larvae – – 41 83 93

Table A.2
Accuracy (Ac) and specificity (Sp) results for the 63 compressed categories.

Taxon or particle Stage Sample size (n) Ac (%) Sp (%)

(a) Copepods identified to the stage level

C. glacialis

C1 47 68 82
C4 45 75 81
C5 135 77 85
F 127 76 78

C. hyperboreus

C3 52 75 88
C4 278 79 87
C5 239 90 92
F 224 91 96
M 6 100 83

C. glacialis C2/C. hyperboreus C1 – 19 62 72
C. glacialis C3/C. hyperboreus C2 – 47 80 79

M. longa

C1 55 69 87
C2 32 67 85
C3 28 72 72
C4 55 76 80
C5 81 77 83
F 284 85 88
M 89 86 77

(continued on next page)
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Table A.2 (continued)

Taxon or particle Stage Sample size (n) Ac (%) Sp (%)

Paraeuchaeta sp.

C2 17 100 47
C3 20 100 42
C4 41 100 76
C5 76 98 80
F 42 94 76
F with egg 39 95 97

Pseudocalanus sp.

C1 20 100 20
C4 10 100 70
C5 220 84 83
F 74 78 75

(b) Copepods not identified to the stage level

Aetideidae – 64 92 89
Copepoda egg – 287 100 95
Copepoda nauplii – 362 83 90
Harpacticoida – 68 100 94
Heterorhabdus sp. – 40 91 100
Microcalanus sp. – 68 73 62
Oithona sp. – 52 89 64
Scaphocalanus sp. – 39 90 90
Triconia sp. – 429 88 91

(c) Gelatinous zooplankton

Aglantha digitale – 183 90 95
C. limacina adult – 22 100 100
C. limacinalarvae – 126 90 82
Chaetognatha – 171 91 79
Ctenophora – 79 99 87
Limacina helicina – 126 87 92
Oikopleura sp. – 102 84 81
Other hydromedusae – 17 100 88
Siphonophora – 75 98 69
Veliger larvae – 41 83 93

(d) Non-gelatinous-non-copepod zooplankton

Aphroditiformia larvae – 34 83 97
Cirripedia cypris – 97 85 94
Cirripedia nauplii – 26 94 65
Echinodermata larvae (bell-shaped) – 50 97 60
Echinodermata larvae (triangular-shaped) – 146 89 88
Gammaridae – 39 97 92
Mysidae – 137 97 99
Ostracoda – 295 82 84
Other amphipoda – 121 96 92
Polychaeta adult – 122 76 57
Polychaeta larvae – 155 90 83
Radiolaria – 234 85 92
Themisto sp. – 155 94 83

(e) Other particles

Detritus – 143 83 71
Faecal pellet – 82 88 91
Fibre – 717 88 91
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Table A.4
Complete results of the automatic identifications for the two 2 test stations.

Taxon or particle Stage Station 101 (n) Station 126 (n)

Aetideidae – 8 15
Aphroditiformia larvae – 11 10
A. digitale – 56 62
Chaetognatha – 23 6
Cirripedia cypris – 62 2
Cirripedia nauplii – 10 1
Copepoda egg – 342 32
Copepoda nauplii – 232 115
Ctenophora – 15 11

C. glacialis

F 79 45
C5 1247 421
C4 318 188
C1 98 11

C. glacialis C2/C. hyperboreus C1 – 22 7
C. glacialis C3/C. hyperboreus C2 – 290 127

C. hyperboreus

F 122 135
M 5 1
C5 591 193
C4 2697 1109
C3 220 79

C. limacina adult – 9 –
C. limacinalarvae – 58 23
Detritus – 29 2
Echinodermata larvae (bell-shaped) – 21 4
Echinodermata larvae (triangular-shaped) – 28 2
Faecal pellet – 24 –
Fibre – 16 19
Gammaridae – 1 2
Harpacticoida – 7 5
Heterorhabdus sp. – 5 2
L. helicina – 79 16
Microcalanussp. – 27 1
Mysidae – 3 4

M. longa

F 624 384
M 43 126
C5 83 24
C4 328 153
C3 133 32
C2 100 21
C1 256 52

Oikopleurasp. – 18 5
Oithonasp. – 39 51
Ostracoda – 39 13
Other amphipoda – 20 2
Other hydromedusae – 5 2

Paraeuchaeta sp.

F 2 2
F with egg – 13
C5 14 11
C4 16 12
C3 7 –
C2 1 –

Polychaeta adult – 32 8
Polychaeta larvae – 54 9

Pseudocalanus sp.

F 23 5
C5 141 143

(continued on next page)



158 M.S. Schmid et al. / Methods in Oceanography 15–16 (2016) 129–160

Table A.4 (continued)

Taxon or particle Stage Station 101 (n) Station 126 (n)

C4 1 4
C1 3 –

Radiolaria – 54 20
Scaphocalanus sp. – 1 8
Siphonophora – 5 6
Themisto sp. – 20 4
Triconia sp. – 581 292
Veliger larvae – 20 31
Total – 9418 4083
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